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Maintaining Robot Localizability with Bayesian
Cramér-Rao Lower Bounds

Justin Cano1,3, Corentin Chauffaut2, Eric Chaumette3, Gaël Pages3 and Jerome Le Ny1

Abstract— Accurate and real-time position estimates are cru-
cial for mobile robots. This work focuses on ranging-based posi-
tioning systems, which rely on distance measurements between
known points, called anchors, and a tag to localize. The topology
of the network formed by the anchors strongly influences the
tag’s localizability, i.e., its ability to be accurately localized.
Here, the tag and some anchors are supposed to be carried
by robots, which allows enhancing the positioning accuracy by
planning the anchors’ motions. We leverage Bayesian Cramér-
Rao Lower Bounds (CRLBs) on the estimates’ covariance in
order to quantify the tag’s localizability. This class of CRLBs
can capture prior information on the tag’s position and take it
into account when deploying the anchors. We propose a method
to decrease a potential function based on the Bayesian CRLB
in order to maintain the localizability of the tag while having
some prior knowledge about its position distribution. Then, we
present a new experiment highlighting the link between the
localizability potential and the precision expected in practice.
Finally, two real-time anchor motion planners are demonstrated
with ranging measurements in the presence or absence of prior
information about the tag’s position.

I. INTRODUCTION

Mobile robots require reliable, energy-efficient and real-
time positioning systems to operate. Various technologies
can be used to estimate the position of a robot : computer
vision [1] or Global Navigation Satellite Systems (GNSS)
[2] are among the leading ones. However, irrespective of the
positioning system, an extrinsic measurement is required to
determine the bodies’ locations in a given frame [2], [3].

We focus on ranging-based localization, which determines
positions thanks to distance measurements between the robot
to locate, called tag, and known reference points, called an-
chors. For our experiments we use Ultra-Wide Band (UWB)
sensors, which are increasingly popular in mobile robotics,
due to their low cost and energy consumption [4], [5]. In
particular, signal Time-of-Flight (ToF) estimation techniques
applied to UWB allows up-to-decimeter ranging accuracy
[3], [6]–[8], which makes the technology suitable for indoor
navigation.

Even with small ranging uncertainties, the geometry of
the anchors’ network strongly influences the localizability
of the tags, i.e., their ability to be accurately localized [9].
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Fig. 1: Robots, fixed anchor and UWB sensors used in the
experiments.

This phenomenon is known as Dilution of Precision (DoP)
in the GNSS literature [2], [10, Chap. 7] and transferable to
mobile robotics. To quantify these uncertainties over the tag’s
location, the Cramér-Rao Lower Bound (CRLB), is com-
monly used as a performance metric for localization systems
[9], [11], [12]. The CRLB is a lower bound on covariance
that permits computing optimal theoretical performance of
estimators independently of their implementation [13], [14].

We assume that some anchors are carried by robots and
can be deployed to enhance the tag’s localizability. This
property can be used to design motion planning algorithms,
defining a CRLB-based localizability potential (i.e., cost
function) to decrease in order to improve the tag’s positioning
accuracy [15]. In previous work [16], we proposed decentral-
ized techniques to optimize localizability in Multi-Robots
Systems (MRS) and for robots carrying several tags [17].
The recent work [12] proposes to implement localizability
constraints in graph-based planners to enhance the MRS
positioning performance. However, these methods requires
tag positions that can only been available through estimates.

In this paper, we present an experimental implementation
of a motion planner proposed in [16] for an MRS that uses
tag position estimates as input. Moreover, we define a novel
criterion of localizability, taking into account prior informa-
tion on the tag’s position. Indeed, information on the position
distribution can be obtained during the estimation of the
tag’s position, e.g., using Kalman Filtering. This additional
information is considered when modeling localizability, since
it directly relates to the estimates’ accuracy. To do so, we
leverage Bayesian Cramér-Rao Lower Bounds [14]. We also
propose a motion planner to improve this bound in real-time
and test it in an MRS deployment experiment.



II. PROBLEM STATEMENT

Consider a set K of K anchors, with known positions. The
anchors aim to localize a tag T , which is a sensor carried by
a robot with unknown position pU ∈ Rn, where n ∈ {2, 3}.
The tag performs with each anchor i ∈ K noisy distance
measurements d̃i of di = ||pU−pi|| where pi ∈ Rn denotes
i’s position. Then an estimate of p̂U is computed using the
information brought by these measurements. We assume that
there exists a subset KM ⊆ K of KM mobile anchors in Rn,
each carried by a different robot.

Since the geometry of K strongly influences the quality
of p̂U , our goal is to design motion planners for KM in
order to maintain an adequate localizability of T while
its carrier performs tasks. First, we model the amount of
information brought by the observations d̃ used to build p̂U .
This approach leverages Fisher Information Matrices (FIM)
for deterministic parameter pU estimation as seen in [9].
Second, we consider that prior information on pU is available
and used in the estimation process. We assume that the prior
on the position is actualized by its estimator that gathers
range measurements during the tag trajectory. In particular,
we focus on the case of the popular Kalman Filter (KF)
that dynamically provides a Gaussian model to quantify its
estimates’ uncertainties. Here, we propose to incorporate this
new information in the localizability evaluation thanks to the
Bayesian Fisher Information Matrix (BFIM). In Section III,
we give its definition and a methodology to compute it.

In order to deploy KM , we design in Section IV a
localizability potential JC(pKM

,pU ), where pKM
∈ RnKM

contains all the positions of KM . Based on the the BFIM,
this potential models the expected precision of the estimates,
i.e., JC increases when the quality of p̂U decreases. This
yields a minimization problem to deploy KM towards an
optimal configuration p∗KM

that minimizes JC for a given
pU . We also provide an experiment that highlights the
relation between p̂U precision and this potential.

Section V presents motion planners for KM that maintain
dynamically tag’s localizability in deterministic (i.e., without
prior) or Bayesian contexts. We stress that since the tag is
moving to perform tasks, each pkU at time k yields generally
a different optimal anchor placement pk∗KM

. For the Bayesian
case, a methodology is provided to decrease JC if the prior
density at time k is Gaussian. These algorithms are then
tested on an MRS in Section VI. In these experiments, the
tag is being located with the Least Squares (LS) algorithm
and the KF respectively, using the estimates p̂U in the motion
planning process.

III. INFORMATION MODELING

We aim to quantify the information provided by the
measurements and a (possible) prior on pU . First, we define
the FIM and relate it to the uncertainty on p̂U . Then, we
propose methods to evaluate it numerically.

A. Cramér-Rao Lower Bound

Consider the Probability Density Function (PDF) of the
prior pU on pU denoted fπ : Rn 7→ R+,pU → fπ(pU ).

We have fµ : RKn 7→ R+, d̃ → fµ(d̃;p) the mea-
surements’ PDF, considering the vector d̃ = [. . . d̃i . . . ]

>

with i ∈ K gathering the observations and the vector
p = [. . .p>i . . .p

>
U ]> containing the sensors’ positions. We

assume that these PDFs are twice continuously differentiable.
Under these assumptions the Bayesian Fisher Information
Matrix (BFIM) [14] of pU is defined as follows

FB(p)=−EpU ,d̃

{
∂2 ln fµ(d̃;p)

∂pU∂p>U

}
− EpU

{
∂2 ln fπ(pU )

∂pU∂p>U

}
(1)

where ∂2f•/
(
∂pU∂p

>
U
)

defines the Hessian matrix of f•
with respect to pU . If fπ is unknown, (1) is simplified and
yields the Deterministic Fisher Information Matrix (DFIM)

FD(p) := −Ed̃

{
∂2 ln fµ(d̃;p)

∂pU∂p>U

}
, (2)

that only depends on the rang measurements distribution.
Theorem 1 (Cramér-Rao Lower Bound [14]): If the

BFIM is invertible then the estimator’s covariance satisfies

Σp̂U := E
{

(p̂U − pU )(p̂U − pU )>
}
� F−1B (p),

where the notation A � B denotes that A − B is positive
semi-definite for A and B symmetric. In the case of an
invertible DFIM FD, if E {p̂U} = pU , then Σp̂U � F−1D .

This result is known as the Cramér-Rao Lower Bound
(CRLB) and we use it as a proxy to quantify the tag’s
localizability. This performance bound has the advantage to
be an explicit function of p. It can be decreased by moving
KM and is quickly calculable, as shown in the rest of this
section.

B. Computation of the DFIM

We assume that the distance observations d̃ are Gaussian
and independent which is common when modeling ToF-
based range measurements [3], [9]. Thus we have d̃ ∼
N (d,ΣΣΣd), denoting d = [. . . d>i . . . ] ∈ RK and ΣΣΣd =
diag(. . . σ2

i . . . ) ∈ RK×K . To compute the DFIM, we use the
Slepian Bangs Formula (SBF) for real Gaussian distributions.

Proposition 1 (Slepian-Bangs Formula [13] ): Consider
a position vector pU = [x, y, z]> (resp. pU = [x, y]>)
that parameterizes the PDF fg of a Gaussian random
vector g ∼ N (ḡ(pU ),ΣΣΣg(pU )), with ḡ ∈ RK and
ΣΣΣg ∈ RK×K for some K ∈ N. Then, the coefficients
F ξ,η = −Eg

{
∂2 ln fg/∂ξ∂η

}
of the DFIM Fg ∈ Rn×n of

g with respect to pU coordinates are given as follows

F ξ,ηg =
∂ḡ

∂ξ
ΣΣΣ−1g

∂ḡ

∂η
+

1

2
Tr

{
ΣΣΣ−1g

∂ΣΣΣg
∂ξ

ΣΣΣ−1g
∂ΣΣΣg
∂η

}
,

where η, ξ ∈ {x, y, z} if n = 3 (and η, ξ ∈ {x, y} if n = 2).

Since ∂di/∂ξ = (ξ − ξi)/di for a given coordinate ξ ∈
{x, y, z} and ΣΣΣd is assumed independent of the position, the
application of the SBF yields [9]

FD(pK,pU ) =
∑
i∈K

1

d2iσ
2
i

(pU − pi)(pU − pi)
>, (3)



where pK = [. . .p>i . . . ]
> contains the anchors’ i positions.

The equation (3) clearly indicates that the estimates’ quality
depends on the tag’s relative positions (RP) ei := pU − pi
with respect to the anchors i. The CRLB exists over a simple
condition on the RPs presented below.

Proposition 2: FD is invertible if and only if n relative
position vectors ei, i ∈ K span Rn.

Proof: We gather the RPs ei in E = [. . . ei . . . ] ∈
Rn×K from (3) and note that FD = EQE>, with Q =
diag(. . . d−2i σ−2i . . . ) a invertible diagonal matrix. Then,
noting that rank(FD) = rank(E) fulfills the proof.

C. BFIM Computation with Gaussian Prior

Before deployment, the tag might know with some un-
certainty its initial position, e.g., we assume that it lies in
the operating zone. However, the tag moves to fulfill its
task and the prior uncertainty can be propagated through
time while updating the distance measurements. Here, we
suppose that a distribution is provided by the estimator of
pU and can be used in order to compute the BFIM over
time. Typically, if a KF estimator is used to locate the tag,
it yields at each time k the estimate p̂kU and its estimated
covariance matrix Σ̂ΣΣ

k

pU
[13]. We assume that the PDF fπ

of the prior on pU is the Gaussian distribution N (pU ,ΣΣΣ)
with ΣΣΣ a given definite positive matrix. Thanks to the SBF,
we compute EpU

{
∂2 ln fπ(pU )/

(
∂pU∂p

>
U
)}

= −ΣΣΣ−1 and
finally (1) becomes

FB(p) = EpU {FD(pK,pU )}+ ΣΣΣ−1. (4)

Then, we need to evaluate EpU {FD(pK,pU )} which
is not analytically possible in general. However, we can
approximately evaluate it thanks to the unscented transform
algorithm [18, Chap. 5], which is a standard approach to
sample random Gaussian distributions. To do so, we compute
R := [r1 . . . rn] the generalized square root of ΣΣΣ i.e., which
fulfills ΣΣΣ = R>R. Then, we form the set of sampling points

S = {pU} ∪ni=1 {pU + δri,pU − δri} ,

where η = δ
√
n+ β is parameterized with some constants

α, β > 0. Finally, this expectation can be approximated with

EpU {FD(pK,pU )} ≈
∑
yj∈S

wπ(yj)FD(pK,yj) (5)

where w(yj) = fπ(yj)/
∑
l∈S fπ(yl). The scheme (5)

provides a computationally efficient estimate F̂B of FB ,
which can be implemented in real-time.

IV. LOCALIZABILITY POTENTIAL

Here, we design a localizability potential that permits
KM deployment. Then an experiment that illustrates the link
between empirical localizability and its potential is provided.

A. Localizability Potential

We aim to design motion planners that enhance the quality
of p̂U . We use LS and the KF estimators to compute these
estimates. These algorithms are designed to minimize the
total Mean Square Error (MSE) of p̂U , defined as follows

MSE(p̂U ) := E
{
||p̂U − pU ||2

}
= Tr {Σp̂U } .

Thus, we choose the MSE as performance criterion on the
estimates to quantify the tag’s localizability. The CRLB,
defined in the Theorem 1, yields the following result for
each considered FIM, C ∈ {D,B} depending with respect
to which information we condition

JC(pKM
,pU ) := Tr

{
F−1C (p)

}
≤MSE(p̂U ), (6)

where JC(pKM
,pU ) is the localizability potential and with

pKM
:= [. . . ,p>i , . . . ]

> for i ∈ KM . Then, we assume that
decreasing JC yields a better MSE for the estimator p̂U in
practice [9], [12]. Hence, we define the following placement
problem for the mobile anchors

p∗KM
= argmin

pKM
∈RnKM

JC(pKM
,pU ) (7)

where p∗KM
depends on the tag’s position. We propose to

solve (7) locally in real-time by descending the potential
gradient, which is a common approach for mobile robot
motion planning [19]. We compute the partial derivatives of
JC , with respect to ξi ∈ {xi, yi, zi} a given coordinate of
i ∈ K, thanks to the following formula [15]

∂JC(pKM
,pU )

∂ξi
= −Tr

{
F−2C

∂FC
∂ξi

}
, C ∈ {D,B}. (8)

Then, the results of (8) are gathered in gradient vectors
∇iJC(pKM

,pU ) := [∂JC(pKM
,pU )/∂pi]

> ∈ Rn for each
i ∈ KM , which yields the total gradient ∇JC(pKM

,pU ) =
[. . .∇iJ>C (pKM

,pU ) . . . ]> ∈ RnKM for the set KM . The
differentiation of the DFIM defined in (3), required to
evaluate the gradient of JD with (8), gives

∂FD
∂ξi

=
1

σ2
i

(
2(ξ − ξi)

d4i
eie
>
i +

1

d2i
Dξi

)
, (9)

denoting ξ ∈ {x, y, z} the tag’ coordinates. Dξi ∈ Rn×n is
obtained using elementary differentiation rules

Dη,ζ
ξi

=


2(ξi − ξ), if η = ζ = ξ,

ζi − ζ, if η = ξ and ζ 6= ξ,

0, if η 6= ξ and ζ 6= ξ,

and Dζ,η
ξi

= Dη,ζ
ξi

, for all η, ζ ∈ {x, y, z}2.

B. An Example of Localizability Enhancement

We show an example that highlights the dependence be-
tween the localizability potential and the estimates’ precision
through a simple experiment. Consider a localization system
made of two fixed anchors K = {K1,K2} and a tag, carried
by a ground robot shown in Fig. 1. Here, the anchors and the
tags are custom boards equipped with a Decawave DW1000M
UWB module [8]. The anchors are placed on tripods at the



Fig. 2: Estimates p̂U (t) and actual trajectory pU (t).

same height z1 = z2 = 1.7 m. We assume that the tag’s
height z = 0.7 m is a known parameter and so pU =
[x, y]> has to be determined through ranging. Each anchor-
tag pair (i, T ), i ∈ K acquires a distance measurement
d̃i thanks to the bias-compensated Single-Sided Two-Way
Ranging (SSTWR) protocol described in [6]. These estimates
p̂U are computed by solving the LS problem

p̂U = argmin
pU∈R2

∑
i∈K

(
d̃i − ||p′U − p′i||

)2
(10)

thanks to the Gauss-Newton algorithm [20], where p′U :=
[p>U , z]

> and p′i := [p>i , zi]
>. Here, we assume that the

information is modeled by the DFIM FD introduced in (2)
since we do not provide prior information to build p̂U . The
measurement noise is modeled with a standard deviation of
σ = 2.5 cm. We used a millimeter-accurate motion capture
system, which provides a ground truth for pU , to compute
estimation errors.

As shown in Fig. 2, the tag’s initial position p̂U (0) is
almost aligned with the anchors. This configuration has a
poor localizability since Proposition 2 states that the DFIM
is singular in the case of sensors alignment. To improve
this configuration, the robot is deployed following a gradient
descent scheme [15] using (8) and (9)

pk+1
U = pkU − γk∇TJD(pkU ),

with ∇TJD(pkU ) = −
∑
i∈K∇iJD(pkU ). The superscript k

denotes time indices and γk > 0 is a normalized step-size

0 5 10 15 20 25 30 35
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10
0
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Fig. 3: Localizability function and squared errors.

[20]. We provided the way-points generated by the scheme to
a lower-level position controller [21, p.529] using the ground
truth values as input. The trajectory is visible in Fig. 2 and
superposed with the obtained estimates p̂U .

In Fig. 3 we plotted the time series of the localizability
cost function JC(pkU ) alongside the empirical squared errors
SEk := ||p̂U − pU ||2 for a trajectory realization. As seen
in (6), the potential JD is a lower bound on the expectation
of the squared error which seems to be empirically observed
along the trajectory after 1 s. To highlight this remark, we
plotted a 100-point sliding average curve over 5 trajectories
in Fig. 3. This experiment stresses that the descent of the
localizability potential has strongly enhanced (SE decreases
of three orders of magnitude) the estimates’ quality.

V. MOTION PLANNERS

In this section, we provide two methods to decrease the
localizability potentials JD and JB with real-time position
estimates.

A. Deterministic Motion Planner

In this subsection we suppose that we do not have access to
prior information ,i.e., pU is treated as a deterministic param-
eter and JD is considered as the potential. To decrease this
function, we use the Deterministic Motion Planner (DMP)
based on the approach presented in [16, V]. This motion
planner uses the estimated gradient ∇pKM

Jc(pKM
, p̂U ) of

Jc(pKM
,pU ) where pU is replaced by its estimate p̂U . At

each time k, a local variable ql,k is set to q0,k = pkKM
in

order to perform the following descent operation

ql+1,k = ql,k −ΓΓΓl∇JD(ql,k, p̂kU ), (11)

for l ∈ [0, L − 1] where L is the maximum iter-
ations number. The localizability gradient is evaluated
with the last available estimate p̂kU . The step-size matrix
ΓΓΓk = diag(. . . , γki In, . . . ) is parameterized with γl =
γ0 min{1, γM ||∇iJD(ql, p̂kU )||−1} where γ0 > 0 and γM
is set order to limit the magnitude of the gradient [20]. The
DMP is stopped i) if maxi ||∇iJD(ql,k, p̂kU )|| < ε where
ε > 0 is a given tolerance; or ii) if L iterations are computed
and then yields pk,∗KM

. Finally, pk,∗KM
is transmitted to the

mobile anchors, setting pk+1
KM ,ref := qL,k as the anchors’

controller references at time k + 1.

B. Bayesian Motion Planner

In the case of a Gaussian distribution prior N
(
pkU ,Σ

k
)
,

the information is gathered in the BFIM FB given by (1).
Here we propose the Bayesian Motion Planner (BMP) that
decreases an approximated gradient of JB . We suppose
that ΣΣΣk and p̂kU are known by the motion planner at time
k. First, the equation (8) used to compute the potential
gradient involves the quantity FkB which must be estimated.
To do so, we use the numerical approximation (5), that
yields F̂kB computed thanks to {p̂kU ,ΣΣΣk}. Second, ∂FB/∂ξki
computation is required for all ξki ∈ {xki , yki , zki } with
i ∈ KM at time k. The computation of ∂FB(pk)/∂ξki =



∂EpU

{
FD(pkU ,p

k
K)
}
/∂ξki involves an expectation over the

prior PDF and cannot be analytically computed.
To address this issue, we implement a stochastic gradi-

ent algorithm [22]. The BMP initializes the local variable
q0,k = pkKM

similarly to the DMP. At each iteration l of
the algorithm, a random draw rl with rl ∼ N

(
p̂kU ,Σ

k
)

is
realized. Then for each mobile tag i ∈ KM , we compute the
following gradient descent step

ql+1
i = qli − γl∇̂iJ lB , (12)

where ∇̂iJ lB = [. . . slξi . . . ]
>, for ξ ∈ {x, y, z} with

slξi = Tr

{(
F̂lB

)−2 ∂FD(ql, rl)

∂ξi

}
,

and ql = [. . .q>i . . . ]
>. In (12), for a sufficiently small

step-size γl, we approximate ∂EpU {FD(pK,pU )} /∂ξi after
repeating the iterations. Indeed, performing (12) with small
moves empirically averages the gradient by successive draws
and then estimates its expectation with a limited compu-
tational cost [22]. We adjusted ΓΓΓl with the rule presented
in Section V-A in order to compute ∇̂pKM

JB(ql, rl) =

[. . . , ∇̂iJ lB , . . . ]>, i ∈ KM . After L iterations of (12),
the BMP transmits qL,k to the anchors as new reference
positions pk+1

KM ,ref. Algorithm 1 summarizes the procedure.

Input: pkK,p̂kU ,ΣΣΣk

q0,k = pkKM

for l ∈ [0, L− 1] do
draw randomly rl ∼ N

(
p̂kU ,Σ

k
)

compute F̂B with (5)
compute ∇̂pKM

JB(ql, rl) with (12)
ql+1,k = ql,k −ΓΓΓl∇̂pKM

JB(ql, rl)

end
transmit pk+1

KM ,ref := qL,k to KM .

Algorithm 1: BMP algorithm.

VI. MULTI-ROBOT DEPLOYMENT

We present two deployment experiments using the DMP
and the BMP. We consider a system of three anchors K =
{K1,K2,K3}, with two of them KM = {K1,K2} carried
by ground robots (where z1 = 43 cm, z2 = 53 cm) and the
third fixed on a tripod (z3 = 1.60 m). We aim to localize a
tag T carried by a robot (where z = 51 cm is known), with
pU ∈ R2 unknown. The tag’s location is determined thanks
to range measurements provided by SSTWR performed by
UWB sensors, as in Section IV-B. The three robots used in
the experiments are shown in Fig. 1.

The tag has an assigned task that involves to follow a
given trajectory {pkU,ref} along the x-axis of the workspace
between the origin and x(tf ) = 1.5 m, where tf is the
final time of the experiment. The estimates p̂U are used by
the tag to perform its own trajectory and by the anchors to
decrease the localizability potential. The architecture of the
system is summarized in Fig. 4 and is implemented using
the middleware ROS Melodic.

Fig. 4: System architecture.

A. DMP implementation with LS estimator

First, we implemented the DMP using p̂kU obtained by the
LS estimator (10) with the last available measurements. The
initial positions pj(0) of the robots j ∈ KM ∪ {T} with the
fixed anchor’s position p3 are shown in Fig. 5. The DMP
computes an iteration when the reference position of the tag
pkU,ref and the planed anchors’ position pki,ref are reached for
K1 and K2 (with a tolerance of 20 cm). After convergence,
the DMP sends to the anchors the new reference positions
pk+1
i,ref while pk+1

U,ref is independently sent to the tag. Then,
they are transmitted to the anchors position controllers and
processed. After a time of tf = 140 s the robots reached
their final positions pj(tf ), j ∈ KM ∪ {T}.
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Fig. 5: Robots trajectory and estimates (DMP/LS).

The trajectories of each robot with the estimates p̂U are
plotted in Fig. 5 and their squared errors (SE) in Fig. 6a.
During the trajectory, the average squared error on p̂U is
around (0.11)2 m, which remains sufficient to follow the
tag’s reference trajectory. Nevertheless, we noticed some
estimation issues due to measurement outliers, produced
by nearby reflective surfaces such as the ground and the
robots’ bodies. This is a strong motivation to consider
prior information (i.e., filtering) in the estimation schemes
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Fig. 6: Results with (DMP/LS).

to filter these unmodelized phenomena which can generate
significant errors in the localizability gradient computation.

In Fig. 6b we plotted the localizability potential computed
with the estimated p̂U (i.e., JD(pKM

, p̂U ), in blue) and
the reference pU (i.e., JD(pKM

,pU ), in red) obtained by
the motion capture reference system. The increases in the
potential observable at t = 70 s and t = 110 s are due to the
tag deploying faster than the anchors while it achieves its
task. Indeed, gradient computations in (11) are based on the
k − 1-th tag’s position. However, the potential is decreased
after the anchors’ deployment and maintained at low values
during the trajectory. We remark that the potential values in
Fig. 6b are lesser than the SE presented in Fig. 6a since (6)
holds.

B. BMP implementation with EKF estimator

Here, we present the BMP-based deployment while an Ex-
tended Kalman Filter (EKF) [13] is used to compute p̂U . In
order to implement the EKF, we consider the continuous-time
kinematic state x(t) = [pU ,vU ]>, where vU = [vx, vy]>

is the tag velocity vector. We suppose the single-integrator
dynamic model as follows for ξ ∈ {x, y}{

ξ̇ = vξ + ωξ,

v̇ξ = κξ

where ωξ are κξ independent centered white Gaussian noises
with power spectral densities Sω,ω = 10−2 and Sκ,κ = 10−3.
The observation model, at time l is given by d̃l := dl + νννl

denoting dl = [d1, d2, d3]> and νννl ∼ N
(
0, (0.05)2I3

)
.

After careful discretization of the tag’s kinematics model,
we implemented the EKF in the corresponding robot. It
allowed to compute estimates x̂l and their covariance ma-
trices Σ̂ΣΣ

l

x with an average refresh rate of 20 Hz when new
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Fig. 7: Robots trajectory and estimates (BMP/EKF).
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Fig. 8: Results with (BMP/EKF).

measurements dl are available. We use as input of the BMP
at step k the last available estimate p̂kU extracted from x̂k

and ΣΣΣk := Σ̂ΣΣ
k

pU
from the estimated covariance Σ̂ΣΣ

k

x provided
by the EKF. Then, we repeated with the BMP the same
experiment presented in VI-A.

For this experiment, the trajectories and the estimates are
plotted in Fig. 7 while the SE are shown in Fig. 8a. At the
beginning of the trajectory, we observe on Fig. 8a a quick
decrease of the SE and the potential function on Fig. 8b.
Indeed, the measurement, provided at a 20 Hz refresh rate
allows the EKF to converge fast and Tr

{
(ΣΣΣk)−1

}
increases

as the state estimate’s uncertainty decreases. Around t =
30 s, we notice a slight increase of the potential values, due to
the temporary alignment of the three robots in the workspace.
This slight raise yields an insufficient gradient norm to



redeploy the anchors (the gradient is strongly weighted by
ΣΣΣk, which remains low has the EKF has converged) while
the estimates remains at tolerable precision. Moreover, int
contrast to the experiment presented in Section VI-A, the
EKF smoothed the errors generated by measurement outliers
despite using a simple kinematic model.

In the BMP experiment, the tag’s took tf = 36 s to
reach its destination. This difference with DMP is explained
by the more restrained deployment of the anchors. Indeed,
considering the prior information given by the EKF (which
takes into account all measurement history [13]) the lo-
calizability is less dependent on the geometry than in the
deterministic case. Despite transient effects at the beginning
of the experiment due to the EKF convergence, the mean of
the SE over the trajectory is (0.11)2 m which yields a similar
performance than DMP for a faster deployment time. Indeed,
the DMP deploys the anchors at local optimal positions in
terms of geometry at each time k irrespective of the prior
information used to build p̂k, which can be time-costly. In
contrast, the BMP is influenced dynamically by the prior on
pU and redeploys the anchors if that information suddenly
decreases, which makes it more operative.

VII. CONCLUSION AND PERSPECTIVES

In this paper, we showed a method to maintain the localiz-
ability of a robot performing relative distance measurements
with known positions sensors, i.e, anchors. Thanks to covari-
ance inequalities, we defined a novel localizability potential
taking into account prior information on the robot’s position.
We proposed a methodology to compute and optimize this
quantity by moving mobile anchors. Through experiment,
we highlighted the relationship between the localizability
cost function and actual positioning uncertainties. Finally, we
validated existing and novel motion planners in multi-robot
experiments. Future work will include leveraging tighter
bounds capturing more realistic measurement models and
prior dynamics.
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