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Optimal Localizability Criterion for Positioning with
Distance-Deteriorated Relative Measurements

Justin Cano1,2, Gaël Pages2, Eric Chaumette2 and Jerome Le Ny1

Abstract— Position estimation in Multi-Robot Systems (MRS)
relies on relative angle or distance measurements between
the robots, which generally deteriorate as distances increase.
Moreover, the localization accuracy is strongly influenced both
by the quality of the raw measurements but also by the
overall geometry of the network. In this paper, we design
a cost function that accounts for these two issues and can
be used to develop motion planning algorithms that optimize
the localizability in MRS, i.e., the ability of individual robots
to localize themselves accurately. This cost function is based
on computing new Cramér Rao Lower Bounds characterizing
the achievable positioning performance with range and angle
measurements that deteriorate with increasing distances. We
describe a gradient-based motion-planning algorithm for MRS
deployment that can be implemented in a distributed manner, as
well as a non-myopic strategy to escape local minima. Finally,
we test the proposed methodology experimentally for range
measurements obtained using ultra-wide band transceivers
and illustrate the improvements resulting from leveraging the
more accurate measurement model in the robot placement
algorithms.

I. INTRODUCTION

Reliable and accurate localization systems are critical
for mobile robots to autonomously perform tasks in their
environment. Various positioning technologies, e.g., short-
and long-range radio-frequency (RF) systems, camera- or
Lidar-based systems, offer different trade-offs in terms of
performance, cost or applicability in various environments
[1], [2]. Generally however, these technologies provide dif-
ferent modalities to obtain range or angle measurements
between a robot and environmental features or between
different robots in a Multi-Robot System (MRS).

The quality of the position estimates produced for an
MRS based on relative range or angle measurements depends
on the geometry of the network, a phenomenon known as
dilution of precision [1, Chap. 7]. The relationship between
network geometry and the ability of the robots to localize
themselves can be captured through a localizability cost
function [3], and the robots can then move to optimize this
cost function and thus their positioning performance [3]–[6].
Localizability can be quantified independently of the local-
ization scheme by using Cramér Rao Lower Bounds (CRLB),
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which provide a bound on the error covariance matrix of any
unbiased position estimator one may implement in the MRS.

The CRLB depends on the specific stochastic error model
considered for the raw distance or angle measurements.
Although explicit CRLBs have been developed for measure-
ment noise with constant variance [6], [7], in practice we
observe for many systems that the quality of measurements
degrades with distance. To address this issue, connectivity
constraints can be added to maintain the robots sufficiently
close [8], [9]. However, such constraints increase the com-
plexity of the motion planning problems, and moreover
this approach captures the issue of measurement quality
only indirectly, leading to suboptimal geometries. Hence,
in this paper we propose a measurement variance model
with polynomial dependence on the robot inter-distances
and derive the corresponding CRLB to be used to quantify
localizability and develop MRS deployment algorithms.

To illustrate the usefulness of deriving more refined
CRLBs and localizability measures, we focus on localiza-
tion using Ultra-Wide Band (UWB) transceivers [10]. This
technology can provide distance measurements with decime-
ter to centimeter-level accuracy [11] while being relatively
inexpensive and energy efficient, which makes it particularly
attractive for robotics applications [12]–[14], especially in-
doors. We consider the problem of localizing multiple robots
equipped with UWB transceivers, called tags, communi-
cating with each other and with other transceivers, called
anchors, the location of the latter being known. Anchors can
also be carried by mobile robots having access to an external
source of localization. With enough relative distance or angle
measurements obtained between the transceivers, the robot
positions can be estimated for example using least-squares
or filtering techniques [10], [15]. UWB sensors can acquire
relative range [12], [14] or angle [16], [17] measurements,
using a variety of protocols transmitting signals between
nodes. The accuracy of these protocols deteriorates with the
distance between transceivers because the received signal
power decreases and errors due to fading and multi-path
increase. In particular, the received signal power directly
influences the Leading Edge Detection (LDE) algorithm used
to estimate the signals’ time-of-flight [10], [14]. Therefore,
using a localizability criterion relying on the network’s
geometry without taking into account a realistic measurement
error distribution can lead to misleading predictions about the
tags’ localization accuracy.

The rest of the paper is organized as follows. After a
description of the problem in Section II, Section III presents
the distance-dependent variance model for relative measure-



ments and illustrates how to fit such a model experimentally
for UWB range sensors. For this general polynomial variable
model, the new localizability criterion is derived in Section
IV, based on Fisher Information Matrices defining the CRLB,
computed in Section V. Then, we present optimization
algorithms in Section VI, which include gradient-descent
based algorithms as well as non-myopic strategies to escape
local minima. Finally, Section VII validates the methodology
experimentally and illustrates the benefits of incorporating
the refined model with distance deteriorated measurements
to predict localization accuracy.

II. PROBLEM STATEMENT

Consider the problem of localizing in a given reference
frame in dimension n, with n = 2 or 3, a set U of U
tags with unknown positions, while relying on a set K of
K anchors with known positions. Relative angle or range
measurements µij ∈ R are available between a subset E
of the tags and anchors, with i ∈ U and j ∈ U ∪ K.
Note that these measurements can involve either tag-tag or
tag-anchor pairs, i.e., E ⊂ U × (U ∪ K). The coordinates
pi ∈ Rn of node i ∈ U ∪ K in the reference frame are
denoted pi = [xi, yi, zi]

> if n = 3 or pi = [xi, yi]
>

if n = 2. Each tag is assumed to be carried by a robot,
and a subset KM ⊆ K of the anchors can also be mobile.
Let p := [. . .p>i . . . ]

> ∈ RnN denote the positions of the
N := U +K nodes (anchors or tags).

A. Robot Placement Problem

We aim to move the robots to enhance the localizability
of the tags, which is some measure of the accuracy with
which we can compute an estimate p̂U of the vector of
tag positions pU := [. . .p>i . . . ]

> ∈ RnU , i ∈ U . Since
the localizability depends on the network geometry p, we
introduce a localizability function J(p), which takes smaller
values when the achievable accuracy for p̂U increases. We
then aim to find the optimal geometry p∗, solution to the
following placement problem for the mobile nodes

p∗ = argmin
{pj}j∈KM∪U

J(p) + Jtask(pU ), (1)

where Jtask(pU ) is an additional cost function that represents
the tasks to be achieved by the robots carrying the tags.
Indeed, from the tags’ point of view, J can be seen as a
constraint (e.g., avoid configurations with poor localizability)
as they must achieve tasks while been accurately localized.
The function J should take into account both the geometry
and the quality of the relative measurements µij .

B. Distance-Deteriorating Measurement Models

The localizability depends on the assumed relative mea-
surement model. In this paper, we consider the following
Gaussian model

µij ∼ N
(
µ̄ij(pij), σ

2
ij(dij)

)
. (2)

where µ̄ij is a mean function that depends on the relative
positions pij := pi−pj of the pairs of agents (i, j)∈ E . The

variance σ2
ij(dij) of these measurements is a function of the

inter-node distance dij := ||pij ||. Moreover, we assume that
the measurements are independent for distinct pairs (i, j).
This type of measurement model is standard for example for
RF sensors estimating distances from Time-of-Flight (ToF)
measurements [7], [13]. It is also used in 2D to model noise
in Angle of Arrival (AoA) measurements [7], [16]. However,
σ2
ij is generally assumed to be a constant, independent of

the position, although in practice it is generally the case that
the quality of the measurements decreases as the distance
increases [7], especially as we approach the maximum range
of a given technology. Hence, we propose to use variance
functions σ2

ij(dij) that model the degradation in measure-
ment accuracy with distance, in order to improve the ability
of the function J(p) to accurately predict the localizability. It
is important however to keep the computation of the function
J and of its derivatives sufficiently simple in order to develop
tractable motion planning algorithms.

III. DISTANCE-DEPENDENT VARIANCE MODEL

In this section, we introduce a general polynomial model
of the measurement variance σ2

ij(dij) in (2). As an appli-
cation, we calibrate a model of distance measurements with
UWB transceivers.

A. Polynomial Variance Model

The proposed polynomial variance model is

σ2
ij(dij ;ααα) = α0 +

P∑
l=1

αl(dij − δl)l1δl<dij . (3)

where P ∈ N is the chosen degree of the polynomial andααα =
[α0, α1, δ0, . . . , αP , δP ]> ∈ R2P+1

+ is a vector of parameters.
The the l-th order term of the polynomial activates at the
distance δl. We assume that α0 > 0 because measurements
are uncertain even at close range, and αl ≥ 0 and δl ≥
0, ∀l ∈ [1, P ], to keep σ2

ij(dij) > 0 and increasing with
distance. CRLBs are derived in [7] for the constant variance
case where P = 0. The model (3) offers additional flexibility
at long range while still allowing closed form expressions for
the localizability function.

The parameter vector ααα in (3) for a specific system and
environment can be identified by collecting M measurements
{µkij(pij)}Mk=1 at a set M of relative positions pij , i.e., a
total of M × |M| measurements. We can then compute the
empirical means ˆ̄µij(pij) = 1

M

∑M
k=1 µ

k
ij(pij) and variances

σ̂2
ij(pij) = 1

M−1

∑M
k=1(µkij(pij) − ˆ̄µij(pij))

2, and finally
obtain ααα by solving the least squares problem

ααα = argmin
α̌αα∈R2P+1

+

∑
pij∈M

[
σ2
ij(||pij ||; α̌αα)− σ̂2

ij(pij)
]2
. (4)

B. Application to UWB Two-Way Ranging Measurements

To illustrate the model (3), we consider relative distance
measurements acquired by two Decawave DW1000 ©
UWB sensors [11] performing Single-Sided Two Way Rang-
ing (SSTWR). The exact protocol to deduce distance mea-
surements from signal time-of-flight measurements, includ-
ing clock and power correction, is detailed in [14]. The



UWB transceiver j is carried by a mobile robot as shown
on Fig. 1, and the transceiver i is fixed on a tripod. The
robot moves to different positions while a motion capture
system provides exact measurements of pij . We compute
empirical variances σ̂2

ij(pij) using M = 150 measurement
samples at each relative positions pij . The results are plotted
in Fig. 2 for a straight line trajectory, as a function of dij .
A polynomial fit of the empirical variance is performed for
P = 3 in (4) and shown in red.

Fig. 1: Anchor, robot, motion capture system and UWB
transceiver used for the variance model calibration.

Fig. 2: Empirical variance and fitted polynomial.

At close range in Line-of-Sight (LoS) conditions, the
received power is saturated, which can explain that the
variance remains relatively constant. At longer range, the fact
that received power theoretically decreases proportionally to
the square of the distance could explain the parabolic shape
of σ2

ij when dij > 6.5 m. Moreover, even in LoS, outlier
measurements can also be caused by multi-path propagation
[10], [15], when reflected signals with significant power
are detected by the LDE algorithm instead of the wave on
the direct path. For our set-up using a wheeled robot and
isotropic antennas, the planar ground leads to a higher chance
of multi-path propagation as the distance increases. Note that
the data collected to fit the model using (4) should include
these outlier measurements, in order to capture such trends.

IV. LOCALIZABILITY COST FUNCTION

As in [3], the cost function penalizing network geometries
leading to poor localizability, i.e., poor accuracy of the

estimator p̂U of pU , can be constructed from the CRLB. To
define it, denote f(µµµ;p) the joint probability density function
of the random measurement vector µµµ = [. . . µij . . . ]

>,
which depends on the positions p of the tags and anchors.
Moreover, assume that the estimator p̂U is unbiased, i.e.,
E {p̂U} = pU . Then, the covariance matrix Σp̂U ,p̂U of p̂U
satisfies the CRLB [18, 3.3]

Σp̂U ,p̂U := E
{

(p̂U − pU )(p̂U − pU )>
}
� F−1

U , (5)

where A � B for symmetric matrices A,B means that A−
B is positive semi-definite, and FU ∈ RnU×nU is the Fisher
Information Matrix (FIM), defined as follows [18, 3.7]

FU (p) = −Eµµµ
{
∂2 ln f(µµµ;p)

∂pU∂p>U

}
. (6)

Note that the FIM depends on the global geometry p and
also on the specific distribution f of µµµ.

One can then define the localizability cost function to
minimize as

J(p) := Tr
{
F−1
U (p)

}
, (7)

which is a lower bound on E
{
‖p̂U − pU‖2

}
, the Mean

Square Error (MSE) of p̂U . Using the CRLB has the advan-
tage of providing a localizability measure that is independent
of the specific estimator p̂U implemented in the MRS. The
function (7) corresponds to the A-Opt optimal design strategy
[19, p.137], other functions can be used, such as JD(p) =
log detF−1

U (D-Opt design) or JE(p) = −λmin(FU ) (E-
Opt design, to maximize the minimum eigenvalue of FU ),
as discussed in more detail in [20, III].

V. COMPUTING THE FIM

In this section we derive a closed form expression of the
FIM FU for the measurement model introduced in sections
II and III, which is required to evaluate the localizability
function J in (7).

A. Structure of the FIM

The nU × nU FIM matrix FU can be decomposed into
n× n blocks Fij , 1 ≤ i, j ≤ U , written as

Fij =

F xxij F xyij F xzij
? F yyij F yzij
? ? F zzij

 or Fij =

[
F xxij F xyij
? F yyij

]
, (8)

depending if n = 3 or n = 2, where ? denotes symmetric
terms. From the assumption that the measurements µij are
independent and only available for (i, j) ∈ E , i.e., f(µµµ;p) =∏

(i,j)∈E fij(µij ;pij), we deduce that Fij = 0 for (i, j) /∈ E ,
whereas for (i, j) pairs of tags in E

F ξηij := −Eµij{∂2 ln fij(µij ;pij)/∂ξi∂ηj}, (9)

where we denote pairs of Cartesian coordinates ξ, η ∈
{x, y, z}2 if n = 3 or ξ, η ∈ {x, y}2 if n = 2. We extend
the expression (9) to tag-anchor pairs, so that Fij is defined
for all (i, j) ∈ E . Then, we find that

Fii = −
∑
j∈Ni

Fij ,



where Ni = {j ∈ U ∪ K, (i, j) ∈ E}, by using the fact that

∂fij(µij ;pij)/∂pi = −∂fij(µij ;pij)/∂pj .

Note that Fii can require blocks Fij outside FU , i.e. when
j ∈ K. Hence, it is sufficient to obtain FU to compute the
terms of (9) for all (i, j) ∈ E . For the Gaussian measurement
model (2), this can be done using the Slepian-Bangs Formula
(SBF) [18, 3.9], which gives for (i, j) ∈ E

F ξηij =
∂µ̄ij
∂ξi

∂µ̄ij
∂ηj

σ−2
ij +

1

2

∂σ2
ij

∂ξi

∂σ2
ij

∂ηj
σ−4
ij . (10)

We see that (10) involves the derivatives of the function
σ2
ij defined in (3). For any (i, j) ∈ E , coordinates ξi ∈
{xi, yi, zi}, ξj ∈ {xj , yj , zj}, and ξij = ξi − ξj , we have

∂σ2
ij

∂ξi
= ∂σ2

ij :=

P∑
l=1

αl l
ξij
dij

(dij − δl)l−11δl<dij , (11)

and ∂σ2
ij/∂ξj = −∂σ2

ij/∂ξi. The expression ∂σ2
ij defined in

(11) is zero if P = 0, i.e., if σ2
ij is constant. Note that at

points such that dij = δl, depending on the values of the
constants αl, (11) may only provide one-sided derivatives.

B. Distance Measurements

Suppose that the measurements are distances µij = d̃ij
given by the model (2) with mean µ̄ij := ||pij || = dij , so
that ∂µ̄ij/∂ξi = ξij/dij = −∂µ̄ij/∂ξj . Starting from the
SBF (10), using identity (11) and differentiation rules, we
obtained for (i, j) ∈ E

F ξ,ηij = − ξij
dij

ηij
dij

σ−2
ij

[
1 +

1

2

(
∂σ2

ij

)2
σ−2
ij

]
. (12)

with σ2
ij defined in (3) (we omitted the dependence on dij for

conciseness), and the same notation for the coordinate η ∈
{x, y, z} as for ξ. Alternatively, we can write for (i, j) ∈ E

Fij = −wij
σ2
ij

pij p
>
ij

d2
ij

, (13)

where wij := 1 + 1
2

(
∂σ2

ij

)2
σ−2
ij .

Remark 1: The formulas in [7] correspond to (13) for a
constant variance Gaussian model, i.e., wij = 1. As in [20],
(13) can be used to establish a connection between the FIM
and a weighted version of the infinitesimal rigidity matrix
[21], which can be used to provide conditions guaranteeing
the invertibility of FU [20, Theorem 2].

C. Angle Measurements

Suppose now that n = 2 and we have angle measurement
µij := θ̃ij between nodes (i, j) ∈ E , with mean µ̄ij :=
θij := ∠(~x,pij), where ~x is a know reference direction.
Without loss of generality, we choose ~x = [1, 0]>, so that
θij = atan2(yij , xij). For a coordinate variable ξ ∈ {x, y},
we denote by ξ̄ the other coordinate. We also introduce the
symbol sξ,η , which is equals to 1 if η = ξ and −1 if ξ 6= η.

Finally, the SBF (10) yields directly the following formula,
if i 6= j

F ξηij = − ξ̄ij
dij

η̄ij
dij

σ−2
ij

[
sξ,η
d2
ij

+
1

2

(
∂σ2

ij

)2
σ−2
ij

]
. (14)

Alternatively, we can write for (i, j) ∈ E

Fij = σ−2
ij

[
−1

2

(
∂σ2

ij

)2
σ−2
ij

pij p
>
ij

d2
ij

+
Bij

dij

]
, (15)

where Bij := d−1
ij (I2 − pijp

>
ijd
−2
ij ).

Remark 2: The matrices Bij are 2 × 2 blocks of the
bearing rigidity matrix as defined in [22, Theorem 8]. As
in Remark 1, this link can be used to provide conditions
guaranteeing the invertibility of FU .

VI. LOCALIZABILITY OPTIMIZATION METHODS

In this section we discuss two motion strategies for the
mobile nodes in U and KM that improve localizability by
minimizing the cost function J in (7).

A. Gradient Descent Strategy
To quickly improve the localizability of U , we can use a

gradient descent strategy starting from the initial configura-
tion p0 of the network. For each agent i ∈ U ∪ KM , the
successive desired positions are computed as follows

pk+1
i = pki − ηmin

{
1,

ηmax

||∂J/∂pi||

}
∂J

∂pi

>
∣∣∣∣∣
pi=pki

, (16)

where k denotes a step index, using a normalized stepsize
rule [23]. The step size η is a given positive constant and
ηmax is a parameter adjusting the maximum distance ηmaxη
between two iterations. The gradient (∂J/∂pi)

> can be
computed using standard matrix differentiation rules [24],
which give for each coordinate ζi ∈ {xi, yi, zi}, i ∈ U∪KM ,

∂J

∂ζi
= −Tr

{
F−2
U
∂FU
∂ζi

}
. (17)

In the Appendix, we provide an analytic formula for
∂FU/∂ζi, which can also be used to evaluate gradients
for cost functions JD and JE , from other optimal design
strategies, see [3].

Suppose that the scheme (16) converges after l iterations to
a configuration pl in the neighborhood of a local minimum,
i.e., ||pli − pl−1

i || < ε for each mobile node i and some
threshold ε. The sequence of configurations {pk}lk=0 can be
computed offline and used to provide a reference trajectory
for a lower-level trajectory tracking controller. If used in real-
time in a feedback loop however, the gradients in the scheme
(16) can only be evaluated at the current estimates p̂, which
are supposed unbiased.

The gradient descent scheme can also be implemented in
a distributed manner by the nodes, i.e., it is possible for
each node i to compute its local gradient (∂J/∂pi)

> in (16)
by communicating only with its ranging neighbors. Indeed,
the FIM has the same sparse structure as in [20], so that
the distributed algorithms presented in Section V.B in that
reference can be implemented.



B. Non-Myopic Localizability Improvement Policy

The gradient descent strategy can quickly improve the
localizability of the MRS by finding a local minimum pl

of the function J . However, as we illustrate in Section VII,
there may exist other configurations relatively close to pl

with significantly better localizability. Hence, we propose a
search strategy to attempt to discover such configurations.

To do so, we introduce a regular grid of Rn around each
pli, for i ∈ U ∪ KM . Starting from pl, we recursively
construct the grid by allowing at each stage k motion vectors
uki ∈ Rn for each mobile robot i, with components ±δ
for some step size δ, up to a maximum number of moves
D. We associate a stage cost to a motion uki , which can
penalize odometry drift, energy spent, etc. If we stop the
robots in some configuration pk at stage k, the terminal cost
is J(pk). We then compute via dynamic programming [25]
trajectories for the robots that minimize the sum of the stage
costs and the terminal cost, up to the maximum horizon D.
The optimal trajectory found balances potential improvement
in localizability with the total cost of the additional motions
from pl.

Note that the complexity of the dynamic programming
algorithm is polynomial in D, but exponential in the number
of robots. It is also possible to reduce the size of the search
space by removing from the grid the configurations p such
that J(p) > (1 + γ)J(pl) for some parameter γ > 0,
which prevents trajectories to go through configurations for
the MRS that deteriorate the localizability too much.

VII. EXPERIMENTAL VALIDATION

To test the models and methods developed in this paper,
we consider a simple scenario with 3 fixed UWB anchors
K = {K1,K2,K3}, located at p1 = [3.0, 2.0, 1.5]>, p2 =
[3.0,−2.0, 1.5]> and p3 = [−4, 0.1, 2.0]>, and a unique
UWB tag T carried by the robot shown on Fig. 1. The
position of the tag is pT = [x, y, z]> where z = 0.43 m
is a fixed constant and pU := [x, y]> has to be determined.
The tag T acquires distance measurements with the anchors
using the SSTWR protocol described in [14], and we aim to
find a position that optimizes its localizability.

The following model for the distance measurement vari-
ance is identified empirically in the area where the experi-
ment is held, as explained in Section III

σ2
Tj = α0 + α2(dTj − δ2)21δ2<dTj , j ∈ K, (18)

where α0 = 0.0382 m2, α2 = 5× 10−3 and δ2 = 4.5 m. To
stress the benefits of using the model (18) for localizability
optimization, we consider two deployment scenarios: first,
using a Constant Variance (CV) model, as in [20], with α0 =
0.12 m2, α2 = 0, and second using the Quadratic Variance
(QV) model (18). Then, we compare the actual positioning
performances and the localizability potential values for both
trajectories to stress the benefits of the refined model.

The values of the cost J(pU ) = Tr
{
F−1
U (pU )

}
for the

CV and QV models are plotted on a logarithmic color scale
on Fig. 3. Note that FU corresponds to the information on
x and y coordinates but involves distance measurements in

(a) CV model.

(b) QV model.

Fig. 3: 2D localizability cost J(x, y) and computed paths for
the tag, with the CV and QV models.

R3. The initial tag position is pU (0) = [−2.5, 0.5]>. For
the CV model, the cost presents minima that are quite far
from the anchors, which ignores the deterioration of the the
measurements with the distance. In contrast, the cost for the
QV model has its global minimum inside the triangle formed
by the anchors, which is an intuitive placement solution.

To move the tag and optimize the localizability cost J ,
for both scenarios we first use the gradient descent scheme
(16). We set p0

U := pU (0), η = 200 and ηηmax = 0.5 m, and
plot the computed paths in red on Fig. 3. After convergence,
which is detected using a tolerance parameter ε = 0.1 m, we
apply the Non-Myopic (NM) optimization strategy of Section
VI-B. We use a step size δ = 1.2 m, a depth D = 4 and a
stage cost equal to 2.0 × 10−4 × ‖uT ‖2. The NM strategy
returns a path from plU to a potentially new point p∗U with
better localizability, plotted in magenta on Fig. 3. However,
in the CV case it turns out that plU was already a global
minimum of the cost function, so that the NM optimization
has no effect for that model.

Then, the robot follows pre-computed trajectories joining
the waypoints {p0

U , . . . ,p
l
U , . . . ,p

∗
U} and acquires along

them UWB range measurements with the anchors. At each
position pU (t), it measures distances d̃Tj , j ∈ K, and
computes its position estimate by solving the least squares
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(a) CV model.
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(b) QV model.

Fig. 4: Performed trajectory and robot position estimates.

problem

p̂U (t) = argmin
p∈R2

∑
j∈K

(
d̃Tj(t)− ||p− pj(t)||

)2

,

using the Gauss-Newton method [23]. A motion capture
system records the true trajectory pU (t) of the robot. Since
we are only interested here in characterizing the localization
error, we use pU (t) directly to control the motion of the
robot and follow the preplanned trajectory, instead of p̂U (t).
Finally, we compute the Squared Error (SE) SE(t) =
||pU (t) − p̂U (t)||2 and the potential J(pU (t)). We plot the
results on Figs. 4 and 5 for one trajectory. We also summarize
in Table I the empirical MSE and 3σ confidence bounds for
the initial and final position estimates in both scenarios over
five trajectories.

During the first 3 seconds of each run, we observe large
SE values, as shown on Fig. 5 and by the empirical MSE for
pU (0) in Table I. The cost J(pU ) is correspondingly high,
i.e., the localizability is poor. Indeed, the cost function is a
theoretical lower bound on the MSE, which is highlighted
along the trajectories by the superposition of J(pU (t)) and
SE(t) on Fig. 5. After about 4 seconds for both scenarios
the localization error decreases as the robot moves. However,
range measurement errors presumably due to multi-path are
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(a) CV scenario.
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(b) QV scenario.

Fig. 5: Squared positioning error and localizability cost.

TABLE I: Empirical MSE for initial and final positions.

[m2] pU (0) pU (tf ) (CV) pU (tf ) (QV)
MSE 0.38 0.23 8.3× 10−3

3σ ±0.09 ±0.01 ±0.46× 10−3

observed when the robot is moving and is far from the an-
chors K1 and K2 (see Fig. 5a after about 13 s for example),
which yields a significant loss of precision. These distance-
dependent deterioration issues with the measurements are
ignored by the CV model, while using the QV model for
deployment leads to a significant improvement of the MSE
when the final position p∗U computed by the NM strategy is
reached after 35 seconds.

VIII. CONCLUSION AND PERSPECTIVES

In this paper, we developed a localizability criterion taking
into account relative measurement distortion at long range,
which provides a tighter bound on the covariance of po-
sition estimates compared to constant measurement error
variance models. To use this criterion for robot deployment,
we described gradient-based and non-myopic optimization



schemes. The possible improvements in positioning accuracy
have been illustrated experimentally. Future work includes
developing tractable non-myopic policies to search for opti-
mal configurations over a larger area.
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APPENDIX

Here we give the expressions of ∂Fij/∂pl required to
evaluate ∂J/∂pl in (16) via (17). Consider a coordinate ζl ∈
{xl, yl, zl}. If i 6= j, ∂F ξηij /∂ζl = 0 for all l 6∈ {i, j}. Next, if
i = j we have ∂F ξηii /∂ζl = −

∑
j∈Ni∩Nl ∂F

ξη
ij /∂ζl. Finally,

since the FIM FU is symmetric, we have ∂F ξηij /∂ζl =

∂F ξηji /∂ζl. Therefore, to determine all the terms ∂F ξηij /∂ζl
of ∂FU/∂ζl it is sufficient to compute ∂F ξηlj /∂ζl for j ∈ Nl.

We find

∂F ξηlj
∂ζl

= −∂rij
∂ζl

σ−2
lj qlj + rijζlj(∂σ

2
lj)σ

−4
ij qlj − rijσ

−2
lj

∂qlj
∂ζl

,

where rij = ξljηljd
−2
lj and qlj = wlj = 1 + 1

2

(
∂σ2

lj

)2

σ−2
lj

if we consider distance measurements or qlj =
sξ,η
d2ij

+wij−1

for angle measurements. We then compute the two remaining
derivatives ∂rij/∂ζl and ∂qlj/∂ζl. First, we have

∂rij
∂ζl

= d−2
lj γlj − 2ξljηljζljd

−4
lj ,

where

γlj =


ξlj if ζ = η and ξ 6= η,

ηlj if ζ = ξ and ξ 6= η,

2ζlj if ζ ∈ {η, ξ} and ξ = η,

0 if ζ 6∈ {η, ξ}.

Second, if we consider distances measurement, we have

∂qlj
∂ζl

=
∂wlj
∂ζl

=
ζlj

2dlj

(
2(∂2σ2

lj)(∂σ
2
lj)σ

−2
lj − (∂σ2

lj)
3σ−4
ij

)
,

where

∂2σ2
lj =

P∑
l=2

αl l (l − 1)(dlj − d0,l)
l−2 1d0,l<dij ,

and for angle measurements

∂qlj
∂ζl

= −2ζlj
sξ,η
d3
ij

+
∂wlj
∂ζl

.
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