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Improving Ranging-Based Location Estimation
with Rigidity-Constrained CRLB-Based Motion Planning

Justin Cano and Jerome Le Ny

Abstract— Ranging systems can provide inexpensive, accu-
rate, energy- and computationally-efficient navigation solutions
for mobile robots. This work focuses on location and pose
estimation in ranging networks composed of anchors with
known positions as well as mobile robots modeled as rigid
bodies, each carrying multiple tags to localize. Noisy distance
measurements can be obtained between a subset of the nodes
(anchors and tags), and the robots can move in order to improve
the accuracy of the localization process, which depends on
the geometry of the network. We propose a method to find
trajectories for the robots leading to configurations that locally
optimize this localization accuracy. These trajectories minimize
a cost function based on the constrained Cramér-Rao Lower
Bound (CRLB), where the constraints capture the information
about the known distances between tags carried by the same
robot. A primal-dual optimization scheme aims to enforce these
distance constraints between tags in the motion planner as
well. An important feature of the approach is that the gradient
terms necessary to plan the motion can be computed essentially
in closed form, thereby simplifying the implementation. We
compare the proposed method to a naive two-stage algorithm
that optimizes the positions and orientations of the robots
independently. Simulation results illustrate the benefits of using
the constrained optimization approach.

I. INTRODUCTION

Mobile robots require accurate, real-time, computationally
and energy efficient pose (position and orientation) esti-
mation solutions in order to accomplish their tasks. Many
sensing-modalities can be used to design these navigation
systems, with systems based on radio-frequency (RF) com-
munications (such as the GPS) or computer vision being
currently among the most popular [1], [2]. One can also
classify these systems based on the type of geometric infor-
mation extracted from the measurements. This paper focuses
on the use of ranging technologies, i.e., providing only
distance measurements (no bearings), as can be obtained for
example from RF devices such as Ultra-Wide Band (UWB)
transceivers. UWB-based distance measurements can be used
for example to design inexpensive yet highly accurate indoor
navigation systems that require little processing power, in
comparison for example to vision-based systems [3]–[8].

A ranging-based navigation system involves a network
of nodes capable of measuring their relative distances, e.g.,
via signal time-of-flight measurements in the case of UWB
nodes. Some of these nodes, called anchors, know their
absolute positions, and the goal of the navigation system is
to estimate the location of the remaining nodes, called tags.
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The relative positions between the nodes strongly influence
the accuracy with which this localization problem can be
solved, a phenomenon called Dilution Of Precision (DOP) in
the navigation literature [2, Chap. 7], which can also be given
a statistical interpretation via the Cramér Rao Lower Bound
(CRLB) [9, p. 184] on the variance of the tags’ position
estimates [10]. As a result, the node localization problem
becomes coupled with the node placement problem, or, in the
case of mobile robots trying to maintain an accurate position
estimate as they move through their environment, with the
motion planning problem. One can then use performance
measures computed from the CRLB to solve localizability-
constrained motion planning problems [11]. This is similar
in spirit to other planning problems under uncertainty in
robotics, see, e.g., [12]–[15].

We consider here scenarios where a number of robots
moving in the plane carry multiple ranging tags and need
to solve pose estimation and pose optimization problems on
SE(2) while moving, instead of just a localization problem
for the tags, as done in [11] for example. In other words,
the motion planning problem for the nodes to maintain
their localization accuracy should take into account the rigid
constraints that link the tags carried by the same robot, both
in the definition of the cost function and in the design of the
motion strategies. One possible approach is to directly define
a CRLB on SE(2) [16], [17] in order to build a cost function
capturing localization performance. However, using explicit
parametrizations of SE(2) to define the robot configurations
leads to complex expressions that are difficult to optimize.

Instead, as explained in section II, we develop here an
approach based on the constrained CRLB [18], adding dis-
tance constraints between the tags within each rigid body to
define an appropriate cost function capturing the ability of the
robots to localize. We consider here the two-dimensional case
for simplicity, but the extension to 3D is straightforward. We
then develop in Section IV a gradient based motion planning
strategy for the robots that also takes these constraints into
account, via a primal-dual optimization algorithm. The robot
pose estimates are implicitly optimized by integrating these
constraints in the motion planner. For comparison, we also
design in section III a naive motion planner that simplifies
the problem by using a two-step approach, first optimizing
the location of one tag on a robot, before optimizing the
robot’s orientation. The simulations presented in V and in
the accompanying video illustrate the benefits of using the
more sophisticated approach.



II. BACKGROUND AND PROBLEM STATEMENT

As illustrated on Fig. 1, we fix a 2D global frame G =
(0, ~x, ~y) and consider a network of N = n + m agents
(nodes), each equipped with a distance measuring device
such as an UWB transceiver, whose positions are denoted
pi = [xi, yj ]

>, 1 ≤ i ≤ N . We known the exact positions
of the first n agents denoted Ai, 1 ≤ i ≤ n, forming a
set A and called anchors. The other m agents, called tags,
need to be localized. They form a set T and are denoted Tj ,
n < j ≤ N . Moreover, the tags are all carried by s rigid
bodies (or robots) Sk, 1 ≤ k ≤ s, whose configuration in
SE(2) can be described by their pose, i.e., the position of
their center of mass pGk = [xGk , y

G
k ]> and their orientation

θk. We assume that each rigid body is carrying at least two
tags and that all distances between tags on the same rigid
body are known.
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Fig. 1: Configuration with three anchors and two rigid bodies.

We suppose that certain pairs {i, j} of agents (anchors
and tags) are able to measure their relative distances dij =
||pij ||2, where pij = pi−pj . These distance measurements
can then be used to estimate the tags’ positions in the global
frame G. Our goal is to move the Sk robots from their
starting pose in order to improve the accuracy of the tag
localization process and hence in fine reduce the uncertainty
in the estimates of the poses. The motion planning problem
is stated in Section II-C, after we introduce the necessary
background to evaluate this uncertainty quantitatively.

A. Equality Constrained Cramer-Rao Lower Bound

Let x ∈ Rp be a parameter vector and Y ∈ Rq a ran-
dom observation vector, whose Probability Density Function
(PDF) f(y;x) depends on x. We suppose f to be sufficiently
differentiable, as a function of x. We define the p×p Fisher
Information Matrix (FIM) of this PDF as follows:

F(x) = E

{
∂ ln f(Y;x)

∂x

>
∂ ln f(Y;x)

∂x

}
, (1)

with E {·} the expectation operator.
Theorem 1 (Equality-constrained CRLB [18]): Let fc :

Rp → Rc, for c < p, C = {x ∈ Rp, fc(x) = 0}, and consider
a parameter vector x ∈ C and a random vector Y ∈ Rq . Let
y 7→ x̂(y) be an unbiased estimator of x, i.e., E {x̂(Y)} =
x, computed from Y and satisfying the constraints x̂ ∈ C.
Assume that x̂ has finite covariance. Denote the Jacobian of
the constraint function ∂fc

∂x and introduce a matrix A with p

rows and columns spanning the nullspace of ∂fc
∂x , We then

have the following inequality :

Σ := E
{

(x̂− x)(x̂− x)>
}
� A (Fc)

†
A> =: Bc (2)

where † denotes the Moore-Penrose pseudo-inverse [19,
p.21] and Fc := A>FA is the constrained FIM. Here, the
notation M � M′ for M,M′ square symmetric matrices
means that M−M′ is positive semidefinite.

B. Measurement Model and Information Matrix

Suppose that we can obtain noisy relative range measure-
ments, e.g., from a Two-Way Ranging RF protocol [3, p.70],
between pairs of agents {i, j}

d̃ij = dij + νij , where νij ∼ N (0, σ2), (3)

with independent noise samples. The agent positions consti-
tute a parameter vector x that we want to estimate and the
distance measurements a random observation vector Y that
depends on x. Thus, we can compute the FIM F ∈ R2N×2N

from (1). We introduce the notation 1i(k) with 1i(k) = 1
if (i) and (k) are communicating (measuring their distance)
and 1i(k) = 0 otherwise. Then, as shown in [10], F can be
decomposed into 2×2 blocks so that one can write for each
block (i, j), with 1 ≤ i, j ≤ N ,

Fij = − 4

d2ijσ
2
pijp

>
ij 1i(j), if i 6= j; Fii = −

N∑
i,i6=j

Fij .

(4)

This FIM is symmetric but not invertible. Indeed, it has a
three-dimensional nullspace generated by rigidly translating
and rotating all the agents in the plane, a fact that can be
formally proved using rigidity theory [11].

Consider a graph G = (E ,V) where the vertices V
represent the agents and edges E correspond to the availabil-
ity of inter-agent distance measurements. We introduce the
framework (G,p) where p = (p1, . . . ,pN ) ∈ R2N are the
positions of all agents. Note that throughout this paper we use
parentheses to denote vectors stacked in one large column
vector. If p′ = (p′1, . . . ,p

′
N ) ∈ R2N is another position

vector, we say that p′ is congruent to p if d′ij = dij for each
1 ≤ i, j ≤ N , i 6= j, where d′ij = ||p′ij ||. Two frameworks
(G,p) and (G,p′) are called equivalent if for all {i, j} ∈ E
we have d′ij = dij . (G,p) is called rigid if there exists
c > 0 such that for all (G,p′) equivalent to (G,p), which
moreover satisfy ||pi−p′j || < c,∀{i, j} ∈ V , we have that p
is congruent to p′ [20]. A rigid framework can be translated
along ~x or ~y or rotated without changing the distances [21]
and hence the position estimate. A possible solution to this
issue is to fix a subset of the nodes (subset A) and derive
the constrained CRLB.

We can partition F defined in (1) as follows

F =

[
FA FAT
F>AT FT

]
with

{
FA ∈ R2n×2n,FAT ∈ R2n×2m

FT ∈ R2m×2m,

and apply Theorem 1 with the constraint function f̃c(p) =
(f̃c,1(p1), . . . , f̃c,n(pn)), representing the knowledge of the



true anchor positions p̄i, i.e., f̃c,i(pi) = pi − p̄i ∈ R2, for
1 ≤ i ≤ n. We then find Ã =

[
02m×2n I2m

]>
, so that

the Fc matrix in Theorem 1 is equal to FT . This matrix is
invertible if (G,p) is rigid and n ≥ 2, fixing the framework
at a given place and orientation.

C. Motion Planning Problem

We aim to optimize the location of the tags in T by
minimizing a criterion derived from the matrix Bc introduced
in (2). We choose to minimize the lower bound on the mean-
squared error (MSE) of the estimator p̂T of the tag positions
pT = (pn+1, . . . ,pn+m) ∈ R2m. Although minimizing the
CRLB provides no formal guarantee that a even the best
available position estimator will perform well, it is a standard
practice to optimize localization accuracy in the literature
on sensor placement [10] and navigation systems [22], [23],
since the CRLB is a generalization of the concept of DOP.

Introduce the constrained set of tag locations

R =
{
pT ∈ R2m

∣∣∣∀k ∈ [1, s], if (Ti, Tj) ∈ Sk, rij = 0
}
,

(5)
where rij = 1

2 (||pij ||2 − d2ij). Assuming we know all
distances between tags on the same rigid body, the estimators
p̂T can use the property that pT ∈ R and the CRLB should
take this knowledge into account.

To define this CRLB, introduce the vector r(pT ) =
(r1, . . . , rs) ∈ RK , where rk = [. . . rij . . . ]

T corresponds to
distance constraints for tags carried by Sk and K is the total
number of such constraints. Hence, pT ∈ R is equivalent
to set r(pT ) = 0. To use Theorem 1, the node positions
p satisfy the constraints fc(p) = (f̃c(p), r(pT )) = 0. We
can compute ∂fc

∂p and its kernel matrix A, see Section IV.
Then, we obtain the constrained FIM Fc and constrained
CRLB Bc. Any unbiased estimator of the positions p̂T then
satisfies the following scalar inequality on its MSE

E
{

[p̂T − pT ]>[p̂T − pT ]
}

= Tr {Σ} ≥ Tr {Bc} ,

where Σ is the covariance of the estimator.
This discussion leads us to define the cost function

J(pT ) = Tr {Bc}, which serves as a potential field that
we attempt to minimize by moving the robots. Alternatively,
one could impose an upper bound on this function when
using other optimization-based motion planners. We must
also ensure that tag trajectories satisfy the constraints defined
by R at all time. Hence, we aim to solve the problem

p∗T = argmin
pT ∈R

J(pT ), where J(pT ) = Tr {Bc} , (6)

to find a (locally) optimal placement for the tags, which
would improve the accuracy of their location estimate and
as a result the pose estimation for the robots, see Section V
for some examples.

III. CENTER OF MASS MOTION PLANNER

A naive approach to enforcing the constraints (5) is to
use a two-step approach: first, move the centers of mass pGk
of the robots by minimizing J̃(pT ) = Tr

{
F−1T

}
, without

modifying their orientation; then, rotate the bodies to find an
optimum orientation. To simplify the discussion, we assume
here that a node (i) is present at the center of mass Gk of
solid Sk.

A. Positioning Optimization

With ξi denoting one of the coordinates xi or yi of an
agent (i) and ξij = ξi − ξj , we have [19]

∂J̃(p)

∂ξi
=
∂Tr

{
F−1T

}
∂ξi

= −Tr

{
F−2T

∂FT
∂ξi

}
. (7)

The matrix ∂F
∂ξi

can be computed from the 2× 2 blocks

∂Fij
∂xi

=
8× 1i(j)

σ2d2ij

x3
ij

d2ij
− xij yij

(
x2
ij

d2ij
− 1

2

)
?

xijy
2
ij

d2ij

 ,
∂Fij
∂yi

=
8× 1i(j)

σ2d2ij

yijx2
ij

d2ij
xij

(
y2ij
d2ij
− 1

2

)
?

y3ij
d2ij
− yij

 ,
(8)

for {i, j} ∈ [1, N ], i 6= j, where the symbol ? replaces
symmetric terms. Indeed, all blocks ∂Fkl

∂ξi
can be computed

from (8), see [11] for the details.
The gradient ∂J̃(p)

∂pG
k

can be computed from the previous
expressions for the node (i) placed at Gk. Defining pk ∈
R2|Sk| the position vector for all tags carried by Sk, we can
follow the gradient flow by translating all the tags on Sk by
the same vector

pk(l + 1) = pk(l)− αk(l) 1|Sk| ⊗

[
∂J̃(p)

∂pGk
(l)

]>
(9)

with 1|Sk| an all-ones vector, ⊗ the Kronecker product and
αk(l) ∈ R a decreasing stepsize chosen by Armijo’s Rule for
example [24, p. 35]. The gradient-based motion of a robot
k is stopped when the gradient falls below a pre-defined
threshold.

B. Orientation Optimization

Simply translating the robots satisfies the constraints (5)
but does not necessarily result in optimal positions for all
tags. In a second step, we can rotate the rigid body around
its center of mass in order to further decrease J̃(p). Since
in two dimensions this is a one-dimensional optimization
problem, one can simply gradually increment the orientation
angle until a local minimum is found for J̃ , or perform a
full rotation of the robot by such increments to find a global
minimum over the orientation angle.

IV. RIGID BODY MOTION PLANNER

In this section we present an algorithm to solve (6) directly
and obtain a gradient flow that the robots can follow to
optimize the localization of all their tags simultaneously.



A. Lagrangian Descent Formulation

Minimization of J(pT ) is subject to the equality constraint
r(pT ) = 0, which must remain satisfied as the robots
move. To solve this constrained problem, we implemented
the following first-order Lagrangian algorithm [24, p.528],
written here with a reordering of the elements of pT to
partition them between x and y coordinates pT = (xT ,yT ):pT (l + 1) = pT (l)− β(l)

(
∂J

∂pT (l)
+

[
λλλ>(l) ∂r

∂xT (l)

λλλ>(l) ∂r
∂yT (l)

])
,

λλλ(l + 1) = λλλ(l) + δr(pT (l)),
(10)

where β(l) is decreasing stepsize following Armijo’s rule
[24] and γ, δ two constants. The scheme is stopped when
||pT (l + 1)− pT (l)||2 < η, with η a given threshold.

B. Gradient Computation

1) Expression of the CRLB: The criterion J(pT ) =
Tr {Bc(pT )} requires computing Bc, which depends on the
matrix A whose columns span the kernel of ∂fc

∂p , see Section
II-C. The Jacobian of the constraint function is

∂fc
∂p

=

[
I2n 02n×2m

0K×2n diag(R1, . . .Rs)

]
∈ R(2n+K)×2N

where Rk = ∂rk
∂pk

are called rigidity matrices of Sk
[25]. Each of these matrices admits a null space spanned
by three vectors [21], [25]: kerRk = span{vk1 ,vk2 ,vk3}
with vk1 = 1|Sk| ⊗ [1, 0]>, vk2 = 1|Sk| ⊗ [0, 1]> and
vk3 = (. . . ,v3k,i, . . . ) where v3k,i = [yi,−xi]> for the
tag Ti ∈ Sk. Hence, A := [a1, . . .as] ∈ R2N×3s with

ak =

[
02n×3
vk(pk)

]
∈ R2N×3 and the 3 columns of the matrix

vk(pk) obtained by placing the vectors vk1 ,v
k
2 ,v

k
3 on the

lines for the kth rigid body.
2) Gradient of the Cost Function: Let us introduce the

notation v[j] to represent the j-th component of the column
vector v. We compute the derivative of A with respect to
each coordinates present in pT . For each coordinate ξi ∈
{xi, yi} for tag Ti ∈ Sk, we have :{

∂aj

∂ξi
= [02n×2 v′k,ξi ], if j = k;

∂aj

∂ξi
= 02n×3 elsewise.

with v′k,xi
[2n+ 2i+ 1] = −1 (resp. v′k,yi [2n+ 2i] = 1) and

v′k,xi
[j′] = 0 for j′ 6= 2n+ 2i+ 1 (resp. j′ 6= 2n+ 2i). We

then form the ∂A
∂ξi

matrix from the ∂aj

∂ξi
matrices.

Then, we compute the gradient of J with respect to ξi,
with Ti ∈ T :

∂J

∂ξi
=

∂

∂ξi
Tr
{
AFc

−1A>
}

= 2Tr

{
∂A

∂ξi
Fc
−1A>

}
− Tr

{
AF−1c

∂Fc
∂ξi

Fc
−1A>

}
with

∂Fc
∂ξi

= A>
∂F

∂ξi
A +

∂A

∂ξi

>
FA + A>F

∂A

∂ξi
,

since Fc = A>FA, where ∂F
∂ξi

is given in (8). We can build
the whole gradient by concatenation

∂J

∂pT
=

[
∂J

∂pn+1
, . . .

∂J

∂pN

]
with

∂J

∂pi
=

[
∂J

∂xi
,
∂J

∂yi

]>
.

3) Gradient of the Rigidity Constraint: Let ξξξT ∈
{xT ,yT } containing all ξi coordinates of the agents of the
set T . The gradient of the rigidity function ∂r

∂ξξξT
is block

diagonal because ∂rij
∂ξj′

= 0 if {Ti, Tj} and Tj′ are carried
by different rigid bodies. We can compute remaining values
using following formulas:

∂rij
∂ξj′

= ξi − ξj , if j′ = i;
∂rij
∂ξj′

= ξj − ξi, if j′ = j;
∂rij
∂ξj′

= 0, otherwise.

V. SIMULATIONS

A. Numerical Motion Planning Schemes

We present a comparative use case for rigid body motion
planning. Let a network of N = 4 agents, with n = 2
fixed-position anchors A1 and A2. The remaining agents are
m = 2 tags, T3 and T4, carried by rigid body S1. Therefore,
d34 is constant and known. An arbitrary initial value for the
positions p = [p1,p2,p3,p4] is chosen and shown on Fig.
2). The goal is to deploy pT = [p3,p4] using the algorithms
presented Sections III and IV.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2

-1

-0.5

0

0.5

1

Fig. 2: Initial configuration.

To simplify the setup, we suppose that T3 is located
on G, the center of mass of S1. For the Center of Mass
Motion Planner, we have plotted a 30-step path on Fig.
3. For the first 15 steps of the trajectory, the algorithm
follows the partial gradient scheme (9). We see that the
global criterion J(p) actually increases during this stage.
This issue is due to the alignment of the four agents. Indeed,
descending the gradient with respect to the center of mass
is not equivalent to minimizing the global cost function.
The naive approach can therefore in fact deteriorate the
precision of the localization dramatically. For the chosen
threshold κ, the rotation optimization stage starts at iteration
15. T3 remains fixed as T4 rotates until J(p) reaches a local
minimum.

The trajectory found by the Rigid Constraint motion
planner, following the scheme (10), is presented on Fig.
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Fig. 3: Center of Mass motion planner.

4 for the first 20 steps. The cost function monotonically
decreases along the path and the trajectory is intuitive,
forming a circular arc. Indeed, the final tag positions are
obtained by rotating the rigid body and essentially make the
triangles T3T4Ai, i ∈ {1, 2} isosceles. The rigidity constraint
fc(l) = ||p3(l) − p4(l)||2 − d34(0)2 = 0 remains close to
satisfied during the motion. Profiling analysis on Matlab
shows that the runtime per iteration of the Rigid Constraint
motion planner was 1.75 times longer than for the Center
of Mass algorithm, which shows that the complexity of our
proposed algorithm remains reasonable.
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Fig. 4: Rigid constraints algorithm motion planning.

B. Performance with Least Squares Estimators

In order to demonstrate the localization improvement
induced by motion planning on an actual estimator, we solve
the following least squares problem at each step of the
algorithm:

p̂T = argmin
pT ∈Rm×2

{
m∑

i=n+1

( n∑
j=1

[d̃ij − ||p̂i − pj ||]2

+

m∑
k=n+1,k 6=i
(Ti,Tk)∈Sp

[dik − ||p̂i − p̂k||]2
)}

, (11)

given the range measurements d̃ij and knowing the distances
constraints dik within each rigid body Sp. We performed
Monte Carlo simulations using the model (3), setting σ =
0.1 m, to evaluate empirically the MSE QiE of the position
estimate of node i = 3 at 4, over M = 30000 simulations,

at each step l of the trajectory

QiE(l) =
1

M

M∑
r=1

(p̂i(l; r)− pi(l))
>(p̂i(l; r)− pi(l)).

(a) Center of Mass motion planner.

(b) Rigid Constraints motion planner.

Fig. 5: Monte-Carlo simulations.

Monte-Carlo simulation results for the empirical MSE of
the least squares estimate (11) at each step of the trajectory
are shown on Fig. 5, plotted with the 3σ confidence bounds.
On Fig 5a, we plotted the results for Q3

E(l) and Q4
E(l)

using the Center of Mass motion planner. As noticed on
Fig. 3, the algorithm optimizes the position of T3, which
is the center of mass of the rigid body. Indeed, the blue
curve representing the estimate of T3’s position is seen to
decrease monotonously. On the other hand, the red curve
confirms a transient degradation of the positioning accuracy
for T4, as the CRLB-based criterion increases (see Fig. 3).
Nevertheless, by the end of the simulation, the uncertainty on
the position of T4 has also decreased significantly. The same
simulation for the Rigid Constraint motion planner shows
on Fig. 5b a simultaneous reduction in position estimate
uncertainty for both tags, confirming the results of Fig. 4.

C. Influence of Motion Planning on Rigid Body States Esti-
mation

The objective of minimizing the tags’ location uncertainty
is actually to improve the pose estimation for the robots.
With x = [xG, yG, θ]

> ∈ SE(2) the configuration of the
robot in this example, the position pi of tag Ti at each step
l of the algorithm is given by

pi(l) = pG(l) + R(θ(l))ai := gi(x),

where R(θ(t)) is a 2D rotation matrix and ai a known
vector, representing the tag’s coordinates in the rigid body



frame. From the estimates p̂i(t) obtained using (11), we can
formulate the following nonlinear least squares problem in
order to estimate x

x̂(l) = argmin
x∈R2×S1

{ N∑
i=n+1
Ti∈Sp

[p̂i(l)− gi(x)]
>

[p̂i(l)− gi(x)]
}
.

(12)
We solve this problem with the Gauss-Newton algorithm
[24]. Fig. 6 shows the results of 3000 Monte-Carlo sim-
ulations to evaluate the MSE for the body configuration
estimates. The estimates p̂T used in (12) are those from
Fig. 5.

Fig. 6: Monte Carlo simulation for heading and center of
mass position.

With the Center of Mass motion planner, the quality of
the heading estimates initial decreases, because of the align-
ment between the anchors and tags. In contrast, the Rigid
Constraint motion planner improves the accuracy uniformly
on each state.

D. Application to an Unmanned Ground Vehicle

We applied the Rigid Constraint motion planner to the
following scenario. The pose of a rover carrying three UWB
tags (denoted T4,T5 and T6) is estimated by relying on three
anchors A1,A2 and A3, whose absolute locations are known
in the global frame G, equal to aG1 = [−3, 3]>, aG2 = [3, 3]>

and aG3 = [3,−3]>. The center of mass G of the robot center
of mass is located at pG, the origin of the rover’s frame F
and barycenter of the tags. Tag positions in F are known,
equal to pF4 = [0,−4/3]>, pF5 = [−1/4, 2/3]> and pF6 =
[1/4, 2/3]>. The setup is shown on Fig 7.

Using (10), we computed a rigidity compliant trajectory
ptraj
T = {pGT (l), l ∈ [1, F ]} for the tag positions, solving

the minimization problem (6). After this calculation, we
solved an auxiliary least squares problems to estimate the
trajectories of the center position ptraj

G and heading θtraj.
We define θ = ∠(~x,m) to be the angle between m =
(pG4 − pGG) and the vector ~x = [1, 0] of G. We suppose
to be able to reach exactly each planned position pG(l)
and heading θ(l) at iteration l. At iteration l = F , we
introduce a malfunction for anchor A3, which immediately
ceases to emit. The algorithm automatically computes a new
optimization trajectory ptraj2

T = {pGT (l), l ∈ [F + 1, T ]} to
re-position the rover until convergence is reached at l = T .

Fig. 7: Rover and anchors setup.

Detailed results and interactive graphics for this scenario
are shown in the accompanying video. This includes the
rover trajectory and plots of the evolution of the cost function
and empirical MSE. For the latter plots, we used the Monte
Carlo scheme presented in section V-B, with M = 1000
realizations. To do so, the least squares estimate (11) has
been implemented, considering distance constraints between
tags and using measurements with centered additive white
Gaussian noise with σ = 0.1 m. The video demonstrates that
we can obtain a smooth trajectory for the rover, which could
be implemented on a real robot. Moreover, the degradation
of localization accuracy induced by the anchor malfunction
is clearly mitigated by the adjusted trajectory computed by
the motion planner. This shows the practical usefulness of
relying on implementable closed form formulas based on
the CRLB.

VI. CONCLUSION

We presented a motion planning algorithm based on the
Cramr-Rao lower bound (CRLB) to improve the localiza-
tion accuracy in a ranging network with nodes carried by
robots modeled as rigid bodies. The main application is
in estimating the pose of the robots. The algorithm takes
the distance constraints for the tags on the same robot into
account by using an equality-constrained CRLB to formulate
a cost function capturing the localization accuracy. These
constraints are also enforced in a primal-dual optimization
algorithm producing a robot trajectory converging to a local
minimum of the cost function. The expressions of the gradi-
ents necessary to implement the algorithm can be computed
in closed form, which simplifies the implementation. Future
work will focus on real-world experiments, the inclusion
of other constraints in the deployment (tasks, obstacles,
robot dynamics) and developing distributed versions of this
algorithm that scale to large networks.
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