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3 Airbus SAS, France.

ABSTRACT

Ultra-Wide Band (UWB) is a widely used technology
to provide real-time and accurate indoor localization to mo-
bile robots, allowing their safe operation in the absence of a
satellite-based navigation solution. However, UWB perfor-
mance suffers from multi-path outliers when signals reflect
on surfaces or encounter obstacles. This paper describes an
approach to mitigate this issue, based on a M-Estimation
Robust Kalman Filter (M-RKF) and leveraging an adaptive
empirical variance model for UWB signals. The approach is
validated experimentally on a ground robot.

Index Terms— UWB, Robotics, Navigation, RKF.

1. INTRODUCTION

Mobile robots (MR) require at all times reliable position es-
timates to perform their tasks accurately. Moreover, the po-
sitioning system should be low cost, consume little energy
have a sufficient high refresh rate to ensure precise trajectory
tracking. The design of such systems is particularly challeng-
ing for indoor localization, where Global Navigation Satel-
lite Systems (GNSS) such as the GPS are not available. A
widely used technology that meets most of the above require-
ments for MR indoor navigation with decimeter-level posi-
tioning accuracy is Ultra-Wide Band (UWB) [1–3]. UWB
positioning uses relative distance or angle measurements be-
tween transceivers at known locations, called anchors, and
those to localize, called tags [2, Chap. 4]. Position estimates
can then be computed using techniques such as Least Squares
(LS) or Kalman Filters (KF), as with GNSS [4].

Here, we focus on distance measurements techniques
that rely on the estimation of the Time of Flight (ToF), i.e.,
the propagation time of a signal between transceivers [1–3].
The ToF is altered in the presence of obstacles between the
transceivers (Non-Line-of-Sight (NLoS) measurements) or
when reflective surfaces in the environment yield Multi-
Path (MP) trajectories instead of straight-line propagation [2,
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Chap. 4]. The resulting outliers in the measurements strongly
deteriorate the accuracy of UWB-based positioning [1,5] and
are well studied in Radio-Frequency based navigation [4, 6].

One way to enhance the robustness of positioning algo-
rithms to MP outliers is to detect them and reject the measure-
ments. Recent learning-based approaches using the Channel
Impulse Response (CIR) to detect outliers yield promising en-
hancements on positioning precision [5, 7, 8]. However, they
require collecting calibration data and use significant compu-
tational resources. Alternatively, power information extracted
from the CIR has also been used to identify NLoS measure-
ments [9].

Nonetheless, outlier rejection after classification may be
unsuitable when the data is strongly contaminated by MP
(which implies a high rejection rate), and other strategies us-
ing filtering techniques can be used to mitigate these outliers
at a higher level [10–12]. Significant improvements are also
provided by using dynamic models and other sensors such as
Inertial Measurement Units (IMU) [13], but in this paper we
aim to mitigate outliers with only intrinsic UWB information.

We base our mitigation strategy on the M-estimation Ro-
bust KF (M-RKF) presented in [6], tailored to mitigate the
effects of heavy-tailed measurement distributions. As the M-
RKF algorithm has been successfully used in previous work
to mitigate MP outliers in GNSS (e.g., [14]), we aim to use
it for indoor navigation. A NLoS bias model for UWB is
provided through neural network training and used as an in-
put in an M-REKF update in [12]. However, to compensate
for the NLoS effects, this method requires an extensive train-
ing dataset and an IMU. An alternative algorithm using both
a coarse outlier detection scheme and a KF based chi-square
increment has been used to track a slowly moving cart in [11].
However, this system requires adjusting four hyperparameters
empirically.

Here we propose a novel, empirically calibrated adaptive
variance model for UWB ToF measurements, which relies on
First Path Power (FPP) measurements as input that require.
Then, we apply the M-RKF framework to UWB-based local-
ization for MP-contaminated ToF data.

The rest of the paper is organized as follows. We intro-



duce the main assumptions, the notation and the notion of
MP contamination in Section 2. Then, we detail the mitiga-
tion strategy using an M-RKF and adaptive variance model in
Section 3. Finally, we validate the approach in Section 4 by
implementing our algorithm on a ground robot equipped with
an UWB transceiver to enhance its localization, in a challeng-
ing MP-contaminated environment.

2. MULTI-PATH CONTAMINATION

Our goal is to produce an estimate p̂ of the position p ∈ Rn,
with n = 2 or 3, of a MR, using UWB-based range mea-
surements between a tag carried by the MR and a set A of
fixed anchors whose positions pa ∈ Rn, for a ∈ A, are
known. A ranging measurement between the tag and an-
chor a ∈ A is defined as d̃a := cτ̃a, where c is the speed-
of-light and the ToF τ̃a can be estimated using a protocol
such as Two-Way Ranging (TWR), which compensates for
the clock drift between the transceivers [2]. In our exper-
iments we use the TWR protocol described in [15], which
computes τ̃a after an exchange of timestamped messages be-
tween the transceivers. In standard TWR [2, Chap. 6], a first
message is emitted by the tag t at time Tt,1 (according to t’s
clock) and received at time Ra,1 (according to a’s clock) by
the anchor. Then, the response is initiated by a at Ta,2 and
received by t at Rt,2. Finally, the ToF can be computed as
τ̃a = [(Rt,2 − Tt,1)− (Ta,2 −Ra,1)]/2,

Fig. 1: Measurement error histograms with MP contamina-
tion.

Even with a perfect clock drift compensation, the actual
distance da := ‖p − pa‖ differs from the measured d̃a,
which implicitly assumes straight line propagation between
the transceivers. Diffraction of the signal around obstacles
or reflections on surfaces such as ground or walls, i.e., MP,
produce longer ToF measurements than for a direct path. As
a result, the range measurement distribution becomes biased
and heavy-tailed, while standard navigation filters such as the
Extended K (EKF) assume measurements d̃a that are centered
and possibly Gaussian [2,4]. This motivates developing better
filtering methods to take MP-contamination into account.

As an illustration, we plot two histograms of UWB rang-
ing errors d̃a − da on Fig. 1, based on 75000 data points.
The measurements d̃a were obtained by a tag carried by a
mobile robot shown in Fig. 2, while da was provided by a

Fig. 2: Setup used for the experiments, with ground robot
(UGV), UWB anchors and obstacles.

motion capture system (MCS) with negligible error. One can
notice that the empirical distributions are indeed heavy-tailed,
which is a result of MP effects due to ground reflection. Note
that a popular modeling of the MP effect, the ε-contamination
model, uses bimodal Gaussian distributions [6, 7.4.1].

3. MITIGATION ALGORITHM

Here, we present a method to mitigate the effects of MP con-
tamination on positioning. First, we propose a variance model
based on received power to penalize attenuated signals. Then,
we present the M-RKF used to filter MP at higher level.

3.1. FPP-based Adaptive Variance Model

Previous studies [2,9] have shown that MP contaminated sig-
nals are more attenuated than direct signals, i.e., are associ-
ated with lower Reception Power (RxP). Hence, we first de-
velop an empirical variance model, which will then be used
to penalize measurements with low RxP, a standard approach
in navigation [4, 14]. Moreover, the quality of the estimated
reception timestamp improves with the RxP, since the detec-
tion is performed by a maximum likelihood estimator whose
variance depends on the signal to noise ratio [2]. Our imple-
mentation relies on the FPP indicator extracted from the CIR
of the Quorvo’s DW1000 modules [16]. For each transceiver
τ ∈ {t, a}, a ∈ A, the estimated reception time R̂τ,i is ex-
tracted from the CIR using a leading edge detection algo-
rithm [2]. This method uses three characteristic samples of
the CIR [s1,i, s2,i, s3,i] ∈ C3, that define the received FPP by
τ for the message i

P(R̂τ,i) := 10 log
(
(|s1,i|2 + |s2,i|2 + |s3,i|2)/N2

s

)
−AdB,

where AdB and Ns are constants given by the manufacturer
[9, 16]. We use the average FPP during a TWR exchange
between t and a, defined as Pa := (P(R̂a,1) + P(R̂t,2))/2,
in order to build the following model for the measurement
variance r

r(Pa; ξ) = max
(
σ2

min, α10−β(Pa−Pmax)
)

(1)

where ξ := [α, β, σ2
min] is a parameter vector to identify.

Namely, (1) models the variance of the ranging measure-
ments when the FPP is weaker than a given saturation value



σ2
min, thanks to the second term. Indeed, the parameter σ2

min
saturates the value of the variance when the power is sufficient
to perform accurate detection.

Fig. 3: Empirical variance and model fitting.

To set the model parameters, a robot performs a calibra-
tion trajectory among obstacles in a test zone equipped with
an MCS and 4 UWB anchors. In Fig. 3 we plot an his-
togram H of empirical variance estimates, based on 70000
range and FPP measurements. In our experiment, we grouped
these points by power in 50 bins b between Pmin = −101 dB
and Pmax = −81 dB. For each bin b, we compute the em-
pirical variance σ̂b of the range measurements d̃a,i with FPP
falling in that bin, and denote Pb the central FPP value for
the bin. We then set the parameter ξ by solving the following
Least-Squares (LS) problem

ξ = argmin
ξ̌

∑
b∈H

|σ̂b − r(Pb; ξ̌)|2. (2)

that can be solved using Levenberg-Marquardt algorithm [17]
for instance. The final model is shown on Fig 3.

3.2. Robust Kalman Filter Design

In addition to the variance weighing presented in (1), we use
a M-RKF to improve the mitigation of MP outliers. This type
of filter uses an M-Estimator to replace the EKF update step.
This allows the use of other loss functions than the usual `2-
norm, in order to reduce the influence of large residuals in
the estimation process. Since the ranging measurements are
contaminated by MP outliers, their distribution is no longer
Gaussian and the `2-norm should be replaced by a more ade-
quate loss function.

Here, we assume that d̃a follows an ε-contaminated Gaus-
sian observation model, which is a basic model for MP out-
liers [6]. For this kind of distribution, the Huber Loss Func-
tion ρ [18], a hybrid between `1 (efficiently rejecting outliers)
and `2 norms, can be used for the residual e ∈ R

ρ(e) =

{
c|e| − c2/2 if e2 > c2,

e2/2, otherwise.

The parameter c allows us to tune the `1/`2 boundary in ρ. In
this paper, we set it to 1.345, which ensures a 95% asymptotic
relative efficiency for a Gaussian distributed residual e with
unitary variance [6, p. 50]. A more detailed discussion on the
tuning of c is given in [19].

3.2.1. Prediction step

Since we only have access to UWB measurements, we as-
sume a simple linear kinematic model. We define the state
vector as x = [p, ṗ]> ∈ R2n and we assume that p̈ = w =
[. . . wi . . . ]

> ∈ Rn, where wi are independent white Gaus-
sian noises with the same power spectral density Sw. We ob-
tain the discrete state prediction xk|k−1 at time tk as follows

x̂k|k−1 = Akx̂k−1|k−1, with Ak = (I2n+Sn⊗I2)hk, (3)

where hk = tk − tk−1. We denote ⊗ the Kronecker product
and Sn the n × n shift matrix with all its coefficients being
zero except S1,n = 1. The discrete time version of the process
noise is given by a Gaussian random vector ωk ∈ R2n such
that ωk ∼ N (0,Wk) with Wk = SwGk ⊗ In, where Gk ∈
R2×2 with Gk,11 = h3

k/3, Gk,12 = Gk,21 = h2
k/2, Gk,22 =

hk. Then, the prediction’s covariance is given by

Pk|k−1 = AkPk−1|k−1A
>
k + Wk. (4)

3.2.2. M-RKF Update

Then, we incorporate the distance measurement d̃a from an-
chor a, considering that d̃a ∼ N (da, r(Pa)), where r(Pa) is
set using (1) and the FPP measurement. Define the Jacobian
matrix Ja,k = ∂da/∂x|xk|k−1

= [(p̂k|k−1 − pa)>/d̂a,01,n]

of da with respect to the state, where d̂a := ‖p̂k|k−1 − pa‖.
Then, we follow the M-RKF update as defined in [6, Section
7.4]. First, we define the augmented state equation

zk = Hkxk + µk (5)

where zk = [x̂>k|k−1, d̃a − d̂a + Ja,kx̂k|k−1]> and Hk =

[I2n,J
>
a ]>. The covariance of µk can be written as the diag-

onal block matrix P̌k := E
{
µkµ

>
k

}
= diag(Pk|k−1, ra).

Now, we need to normalize the noise variances on zk in
order to apply the M-estimation step. Since P̌k is a pos-
itive definite matrix, it admits a square root Qk such that
P̌k = QkQ

>
k , which can be obtained by Cholesky factor-

ization [20]. Then, we normalize the noise variances in (5)
by left-multiplying it by Q−1

k , so that µ̄k = Q−1
k µk satisfies

E
{
µ̄kµ̄

>
k

}
= I2n+1.

Then, we solve the following M-estimation problem

xk|k = argmin
x∈R2n

2n+1∑
i=1

ρ(ei(x)), (6)

where ei(k) denotes the i-th component of the residual vector
e(x) := Q−1

k (zk −Hkx). In practice, the problem (6) can
be solved using the following iterations [6, Section 2.5]{

Ωl = diag(. . . ω(ei(x)) . . . ),

xl+1 = (H̄>k ΩlH̄k)−1H̄>k ΩlQ−1
k zk,

l ∈ [1, N ] (7)

with the weights ω(ei(x)) := min{1, c/|ei(x)|}, where
H̄k = Q−1

k Hk and setting x0 = x̂k|k−1 as initial con-
dition. We define the stopping condition of the iterations



(7) as ‖xN − xN−1‖/‖xN−1‖ < δ at the iteration N ,
where δ > 0 defines a tolerance threshold. We then set
x̂k|k := xN and the prediction covariance can be approxi-
mated by Pk|k ≈ (H̄>k ΩNH̄k)−1.

Note that the standard EKF algorithm is obtained replac-
ing ρ by the `2-norm, i.e., when the parameter c → ∞; or
equivalently, by setting the weights Ωi uniformly to I2n+1.

4. EXPERIMENTS

We present two localization experiments involving the setup
shown in Fig. 2. The robot acquires UWB measurements with
a transceiver that ranges with four anchors at a refresh rate of
about 280 Hz. The range measurements are obtained using
the TWR protocol presented in [15]. The first experiments is
performed with obstacles present in the testing area (strong
scenario), the second without (mild scenario). The anchor
locations, the obstacles and the trajectories are plotted in Fig.
4 for both scenarios. After acquiring both UWB and reference
MCS data, we post-processed them to test the methodology
presented in the previous section.

(a) Mild scenario. (b) Strong scenario.

Fig. 4: Trajectories and estimates (M-RKF output).

For both experiments we implemented a standard EKF,
a standalone M-RKF, as well as both filters using vari-
ances computed by the FPP model (1) (denoted EKF+FPP
and M-RKF+RPP respectively). For both (M-RKF) and
(EKF), we choose a constant measurement noise variance
r = (0.2)2 m2. For the implementations using the FPP-based
variance model, we set α = 2.1 × 10−4, β = 0.16 and
σmin = (0.14)2 m2, after calibration trajectory using (2). We
set the process noise spectral density to σ2

w = (0.14)2 m2/s3.

Table 1: Empirical RMSE comparison.

Test/Filter EKF EKF/FPP M-RKF M-RKF+FPP
Mild [cm] 20.5 18.4 17.7 16.3

Strong [cm] 43.6 38.1 30.1 29.6

We show in Table 1 the empirical Root Mean Square Er-
ror (RMSE) computed from the trajectories (we skipped the
points where the robot was static) for the two scenarios and all
the EKF/M-RKF implementations. Compared to the perfor-
mance of the EKF, for both scenarios we can notice a signif-

(a) EKF. (b) M-RKF+FPP.

Fig. 5: Positioning error plots for the mild scenario.

(a) EKF. (b) M-RKF+FPP.

Fig. 6: Positioning error plots for the strong scenario.

icant improvement (10% mild, 13% strong) from using the
calibrated FPP-based variance model r(Pa). The M-RKF,
even without the power correction, provides a much improved
localization performance (14% mild, 31% strong). This is
not surprising since it was tailored to mitigate data contami-
nation. Finally, the complete M-RKF framework with FPP-
based variance r(Pa) yields a 20% RMSE reduction for the
mild scenario and a 32% improvement for the strong scenario.

These results are further illustrated in Figs. 5 and 6 by
plotting the components of the errors p̂−p over time. We re-
mark that the localization performance for the mild scenario
is fair while using the M-RKF+FPP algorithm. The compu-
tational time is also reasonable, as we allowed a maximum of
10 iterations in (7). However, the strong scenario highlights
difficulties when the robot’s heading is changing. Indeed, our
prediction model (3) is simplistic and does not include head-
ing observations. Hence, to reach suitable navigation perfor-
mance when the measurements are strongly deteriorated, we
suggest to refine the robot’s dynamic model. Moreover, addi-
tional anchors can be added in order to provide line-of-sight
measurements to the robot, in particular in the top left zone as
shown in Fig. 4b.

5. CONCLUSION AND PERSPECTIVES

In this paper, we first proposed calibrating an empirical vari-
ance model for UWB range measurements deduced from ToF
estimates, based on the received FPP. Then, we designed a
robust M-RKF to design an UWB-based navigation system in
the presence of MP outliers. Finally, we validated through ex-
periments the benefits of both our variance model and the M-
RKF, with real-world data contaminated by MP. Future work
will include odometry and inertial coupling to make the solu-
tion fully operational for robot navigation in challenging en-
vironments.
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